1. INTRODUCTION, WATER

introduction

food science parts food chemistry static part dynamic part food technology (processing, storage, distribution) microbiology nutrition

terminology

food food supplements (nutritional factors) foods for special nutrition functional food nutraceuticals

chemical composition of food

nutrients

nutritive value energy value basic nutrients proteins lipids saccharides essential nutritive factors, vitamins minerals water nutritive and energy value depend on: content of nutrients, digestibility resorption content of other components eating regime health and psychic state heat of combustion

sensory active compounds

organoleptic properties sensory value (quality)

perceptions

olphactoric	smell
gustative_	taste
	aroma
visual	colour
	appearance, shape (geometric aspects)

haptic (feel)

texture consistency (mechanical aspekts) sounds

auditorial

antinutritive factors natural toxic compounds

food, additives contaminants exogenic endogenic

hygienic-toxicological quality food safety

other components influencing food quality

Water

- the only one inorganic compound in biosphere in huge amount
- present in all living organisms
- often the main component
- human body containes cca 60 % water as: intracellular water (25 kg) extracelular liquit (15 kg of which 12 kg in tissues, 3 kg in plasma)

function

- heat managing of organism
- transport medium
- stabilizator of biopolymers
- solvent
- reaction medium
- reactant

classification

- endogenous water: oxidation of main nutritients, 300-400 g/day
- exogenous water: drinks, meals, 2000-2800 g (average 2500 g/day)

drinking water water in food

DRINKING WATER

quality requirements (book 2, table 7.1)

surface water (~ 80%)

- very pure water
- pure water

undergraund water (~ 20%)

- suitable for waterworks
- plain (< 1 g/l)
- minerals (> 1 g/l)

quality requirements for drinking water:

- microbiological
- physical
- chemical
- radiological

production of drinking water

requirements by food industry

- water hardness, content of some cations and anions
- for baby feeding (special sort of water from underground sources)
- drinking water (a sort of drinking water)
- soda water (from table or drinking water and CO₂)
- sparking saturated
- natural, spring water

requirements

utility water, operational water

WATER IN FOODS

content in foods (book 2, table 7.2)

- organoleptic properties (texture, taste,)
- resistance agains microorganisms
- biochemical (enzymatic) and chemical reactions

classification

- foods with high water content
- foods with medium water content
- foods with low water content

changes during storage and processing (book 2, 7.3)

- spontaneous (natural)
- intentional (prolongation of storage time)

losses

drying, cooking, roasting, thaving

accumulation

moisturing, swelling, boiling (examples)

structure

water (chemical individum)

- undissociated molecules H₂O
- hydrated hydronium ion (protons) $H_3O^+(H_9O_3^+)$
- hydroxyl ions HO
- their isotopes $({}^{2}H, {}^{3}H, {}^{17}O, {}^{18}O)$

eletrically stable (permanent) dipole

INTERACTION OF WATER MOLECULES

electrostatic interactions of molecules, association by hydrogen bridges

coordination number: ice =4, water $(1,5^{\circ}C) = 4,4$

association structure: lattice, defects of structure: nonelectrolytes, electrolytes, ionts

PROPERTIES

at common temperatures: 3 states (phase diagram)

unique, anomalous properties

technological consequences and utilisation

INTERACTION IN FOOD

interactions water-minerals

- dissolving and formation of true solution
- ion hydratation

interactions water-proteins

- native conformation
- enzyme activity
- denaturation
- formation of disperse system (gels, foams, etc.)

interactions water-lipids

- formation of biomembranes
- formation of disperse system (emulsions)

interaction water-saccharides

- dissolving of crystals
- stabilisation of anomers, conformers
- formation of disperse system (gels)

free water (mobilised)

bound water (immobilised)

categories (ordinary food with > 90% water)

- monomolecular layer (vicinal water)
- multilayer water
- condensation water (bound, free)

WATER ACTIVITY

in food (book 2, table 7.10)

requirements of microbes (book 2, table 7.11)

water quantity related to:

- growth of microorganisms
- biochemical and chemical reactions
- sensory properties

accessibility

water activity

approximation of Lewis law for low pressure

 $a_w = (f / f_0) = p_w / p_w^0 = \phi / 100$

 $p_w = partial pressure of water vapour over foods$ $p_w^0 = partial pressure of pure water vapour at the same temperature <math>\phi = equilibrium of relative air humidity$

others factors: pH, O₂

dependence on temperature: Clausius-Clapeyron equation $(\Delta H = isosteric heat of sorption)$

$$d(\ln a_w)/d(1/T) = -\Delta H/R$$

influence of $a_{\rm w}$ on microorganisms and mutual reactions

sorption isotherms

relation between water content in foods and their water activity